关于举办新加坡南洋理工大学王一凡助理教授学术讲座的通知

发布时间:2021-11-23设置

报告题目:具有自适应特性的建构化材料

Architected Materials with Adaptive Mechanical Properties

报告时间:2021112610:0011:00

报告地点:腾讯会议 ID42265298356

腾讯直播间:https://meeting.tencent.com/l/QALGLWoVMAcS

报 告 人:王一凡(新加坡南洋理工大学,机械与航空工程学院)

王一凡助理教授官方主页:https://www.yifanwangntu.com/

欢迎广大师生参加。

  

  

土木与交通学院

20211123

  

  

报告人简介:

王一凡,2011年在北京大学获得物理学学士学位,后于2016年在美国芝加哥大学获得物理学博士学位。博士毕业后,在美国加州理工学院机械与土木工程系担任博士后研究员。他于2020年加入南洋理工大学,目前是该校机械与航空工程学院的助理教授。王博士的研究方向是软材料、建构化晶格、软体机器人、材料力学和先进制造。他的研究成果发表在包括NatureNature MaterialsPhysical Review LettersAdvanced MaterialsNano Letters,ACS Nano等国际顶级期刊上。更多详情请参阅:https://www.yifanwangntu.com/

  

Dr. Yifan Wang is the Nanyang Assistant Professor at School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore. Dr. Wang received his Ph.D. in Physics from The University of Chicago, USA (2016), and B.S. in Physics from Peking University, China (2011). Prior to joining Nanyang Technological University in 2020, Dr. Wang worked as a postdoctoral fellow in Department of Mechanical and Civil Engineering at California Institute of Technology, USA. Dr. Wang’s research focuses on soft materials, architected lattices, soft robotics, mechanics of materials, and advanced manufacturing. He has published numerous papers in top international journals, including Nature, Nature Materials, Physical Review Letters, Advanced Materials, Nano Letters, ACS Nano, etc.

  

报告摘要:

建构化晶格是通过选择它们的本构材料及其微观和细观结构的几何形状来获得其特有属性的材料。大多数现有的建构化晶格结构在本质上是被动的,其性能在成型后不再变化。这一特征限制了它们在需要材料具有适应性和可调节性领域上的应用。本次演讲中,王博士将展示一种机械性能可控和能适应不同负载条件的建构化晶格结构的发展。他将首先展示一种充满颗粒的建构化晶格,该种晶格具有的阻尼特性可以在一定的冲击能量范围内被控制以实现最佳的能量吸收。然后,王博士将展现一种具有自锁颗粒的结构化织物,其具有可控的刚度和可重构的形状,适用于可穿戴技术。这些工作为创造下一代机械结构开辟了新的道路,能适应不同环境条件,同时提供最佳防护,其应用范围涉及冲击防护、软外骨骼、医疗支撑、可重构的民用建筑等。

  

Architected lattices are materials that derive their properties from the selection of both their constitutive materials and the geometry of their micro- and meso-structure. Most existing architected lattices are intrinsically passive, with properties fixed once manufactured. This limits their applications in areas where material adaptivity and tunability are required. In this talk, I will present the development of architected lattices whose mechanical properties can be controlled and adapted to varying load conditions. First of all, I will demonstrate an architected lattice filled with granular particles whose damping properties can be controlled to achieve optimal energy absorption, over a range of impact energies. Then, I will show a structured with interlocking particles that has controllable stiffness and reconfigurable shape, which can be used for wearable technologies. These works open routes towards creating the next generation of mechanical structures that adapt to varying environmental conditions while providing optimal protection, with applications ranging from impact protection, soft exoskeletons, medical supports, reconfigurable civil architectures, etc.


返回原图
/